21x^2-25x+10=4

Simple and best practice solution for 21x^2-25x+10=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 21x^2-25x+10=4 equation:



21x^2-25x+10=4
We move all terms to the left:
21x^2-25x+10-(4)=0
We add all the numbers together, and all the variables
21x^2-25x+6=0
a = 21; b = -25; c = +6;
Δ = b2-4ac
Δ = -252-4·21·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-11}{2*21}=\frac{14}{42} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+11}{2*21}=\frac{36}{42} =6/7 $

See similar equations:

| 2x+4+3x+2=21 | | 3x+4.84=5.4. | | 1,250+27.5w=1,400+20w | | 3(2x+4)-2x=20 | | (x/5)+(x/3)=356 | | 9x+8=8x+x+4+4 | | 4(2x+1)-8x=1 | | 12x-2x=10x+8 | | (x/5)+(x/3)=336 | | 50x+5.50=18.50x+7.75 | | 7x-8+3x-12=30 | | j-19=2 | | 8x+5=2(4x+5) | | 21x^2-25x-10=4 | | 2w+11=1.5+14;6 | | 121=p^2 | | 2w+11=1.5+14 | | -3=11+6x-12x | | 7x+6+42x-4=130 | | 5x^2-10x-6=10 | | 6(3x-5)=2(4x-7) | | -62=t-15 | | 8n-13n=15 | | 40-t=7 | | 100=t^2 | | x-160=11x+188 | | -7(7x-4)=-49x-28 | | 180=45+a+a | | 3n+2(n−2)=4n−1 | | Y=5+2(x+1) | | 3x+x=4x-2 | | 8n-11n=12 |

Equations solver categories